Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-4177301.v1

ABSTRACT

The continuing emergence of immune evasive SARS-CoV-2 variants and the previous SARS-CoV-1 outbreak have accentuated the need for broadly protective sarbecovirus vaccines. Targeting the conserved S2-subunit of SARS-CoV-2 is a particularly promising approach to elicit broad protection. Here, expanding on our previous work with S2-based vaccines, we developed a nanoparticle vaccine displaying multiple copies of the SARS-CoV-1 S2 subunit. This vaccine alone, or as a cocktail with a SARS-CoV-2 S2 subunit vaccine, protected transgenic K18-hACE2 mice from challenges with Omicron subvariant XBB as well as several sarbecoviruses identified as having pandemic potential including the bat sarbecovirus WIV1, BANAL-236, and a pangolin sarbecovirus. Challenge studies in Fc-g receptor knockout mice revealed that antibody-based cellular effector mechanisms played a role in protection elicited by these vaccines. These results demonstrate that our S2-based vaccines provide broad protection against clade 1 sarbecoviruses and offer insight into the mechanistic basis for protection.

2.
researchsquare; 2023.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3088907.v1

ABSTRACT

The 2002 SARS outbreak, the 2019 emergence of COVID-19, and the continuing evolution of immune-evading SARS-CoV-2 variants together highlight the need for a broadly protective vaccine against ACE2-utilizing sarbecoviruses. While updated variant-matched formulations such as Pfizer-BioNTech’s bivalent vaccine are a step in the right direction, protection needs to extend beyond SARS-CoV-2 and its variants to include SARS-like viruses. Here, we introduce bivalent and trivalent vaccine formulations using our spike protein nanoparticle platform that completely protected hamsters against BA.5 and XBB.1 challenges with no detectable virus in the lungs. The trivalent cocktails elicited highly neutralizing responses against all tested Omicron variants and the bat sarbecoviruses SHC014 and WIV1. Finally, our 614D/SHC014/XBB trivalent spike formulation completely protected human ACE2-transgenic hamsters against challenges with WIV1 and SHC014 with no detectable virus in the lungs. Collectively, these results illustrate that our trivalent protein-nanoparticle cocktail can provide broad protection against SARS-CoV-2-like and SARS-CoV-1-like sarbecoviruses.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL